Environmental Protection Agency - (4) "Zero grade air" includes artificial "air" consisting of a blend of nitrogen and oxygen with oxygen concentrations between 18 and 21 mole percent. - (5) The use of proportioning and precision blending devices to obtain the required analyzer gas concentrations is allowable provided their use has been approved in advance by the Administrator. - (b) Calibration gases (not including methanol) shall be traceable to within one percent of NIST (formerly NBS) gas standards, or other gas standards which have been approved by the Administrator. - (c) Span gases (not including methanol) shall be accurate to within two percent of true concentration, where true concentration refers to NIST (formerly NBS) gas standards, or other gas standards which have been approved by the Administrator. - (d) Methanol in air gases used for response factor determination shall: - (1) Be traceable to within ±2 percent of NIST (formerly NBS) gas standards, or other gas standards which have been approved by the Administrator; and - (2) Remain within ±2 percent of the labeled concentration. Demonstration of stability shall be based on a quarterly measurement procedure with a precision of ±2 percent (two standard deviations), or other method approved by the Administrator. The measurement procedure may incorporate multiple measurements. If the true concentration of the gas changes by more than two percent, but less than ten percent, the gas may be relabeled with the new concentration. [48 FR 1456, Jan. 12, 1983, as amended at 60 FR 34359, June 30, 1995] # § 86.1215-85 EPA heavy-duty vehicle (HDV) urban dynamometer driving schedule. (a)(1) The EPA dynamometer driving schedule for heavy-duty vehicles is a 1060 second transient speed versus time cycle which is designed to simulate gasoline-fueled HDV operation in urban areas. A second by second listing of this schedule is given in appendix I(d) of this part. Thirty-three percent of the cycle is idle operation, and the average vehicle speed is 18.9 mph (30.4) - km/hr). The Administrator will use this driving schedule when conducting evaporative emission tests, as described in §86.1230–96. - (2) For evaporative emission testing of heavy-duty vehicles a manufacturer may optionally use the dynamometer driving schedule for light-duty vehicles and light-duty trucks specified in appendix I(a) of this part. This driving schedule may not be used for exhaust emissions testing of heavy-duty vehicles. If the manufacturer chooses to use this option, the Administrator will use this driving schedule when conducting evaporative emission tests, as described in §86.1230–96. - (b) The driver should attempt to follow the target schedule as closely as possible. The speed tolerance at any given time for these schedules, or for a driver's aid chart approved by the Administrator, are as follows: - (1) The upper limit is 4 mph (6.4 km/h) higher than the highest point on the trace within 1 second of the given time. - (2) The lower limit is 4 mph (6.4 km/h) lower than the lowest point on the trace within 1 second of the given time. - (3)(i) Speed variations greater than the tolerances (such as may occur during gear changes or braking spikes) are acceptable, provided they occur for less than 2 seconds on any occasion and are clearly documented as to the time and speed at that point of the driving schedule. - (ii) When conducted to meet the requirements of §86.1229, up to three additional occurrences of speed variations greater than the tolerance are acceptable, provided they occur for less than 15 seconds on any occasion, and are clearly documented as to the time and speed at that point of the driving schedule. - (4) Speeds lower than those prescribed are acceptable, provided the vehicle is operated at maximum available power during such occurrences. [48 FR 1456, Jan. 12, 1983, as amended at 58 FR 16050, Mar. 24, 1993; 65 FR 59957, Oct. 6, 2000] ## §86.1216-90 Calibrations; frequency and overview. (a) Calibrations shall be performed as specified in §§ 86.1217 through 86.1226. #### §86.1217-96 - (b) At least yearly or after any maintenance which could alter background emission levels, enclosure background emission measurements shall be performed. - (c) At least monthly or after any maintenance which could alter calibration, the following calibrations and checks shall be performed: - (1) Calibrate the hydrocarbon analyzer (see §86.1221). Certain analyzers may require more frequent calibration depending on particular equipment and uses. - (2) Calibrate the dynamometer. If the dynamometer receives a weekly performance check (and remains within calibration) the monthly calibration need not be performed (see §86.1218). - (3) Perform a hydrocarbon retention check and calibration on the evaporative emission enclosure (see §86.1217). - (d) At least twice annually or after any maintenance perform a methanol retention check and calibration on the evaporative emission enclosure (see §86.1217). - (e) Calibrate the methanol analyzer as often as required by the manufacturer or as necessary according to good practice. $[54\ FR\ 14564,\ Apr.\ 11,\ 1989,\ as\ amended\ at\ 60\ FR\ 34359,\ June\ 30,\ 1995]$ ### §86.1217-96 Evaporative emission enclosure calibrations. The calibration of evaporative emission enclosures consists of three parts: initial and periodic determination of enclosure background emissions (hydrocarbons and methanol); initial determination of enclosure internal volume; and periodic hydrocarbon and methanol retention check and calibration. Methanol measurements may be omitted if methanol-fueled vehicles will not be tested in the evaporative enclosure. Alternate calibration methods may be used if shown to yield equivalent or superior results, and if approved in advance by the Administrator; specifically, more extreme temperatures may be used for determining calibration without affecting the validity of test results. (a) Initial and periodic determination of enclosure background emissions. Prior to its introduction into service, annually thereafter, and after any repair that can affect the enclosure background emissions, the enclosure shall be checked to determine that it does not contain materials that will themselves emit hydrocarbons or methanol. When methanol as well as hydrocarbons are present in the evaporative enclosure. the HFID hydrocarbon concentration measurement includes the partial response of the HFID to methanol plus the hydrocarbons. Determination of the HFID response to methanol, §86.1221, prior to its being placed in service is required for the determination of hydrocarbons. Proceed as follows. - (1) Prepare the enclosure. (i) Variable-volume enclosures may be operated in either latched or unlatched volume configuration, as described in paragraph (b)(1) of this section. Ambient temperatures shall be maintained at 96±3 °F throughout the 4-hour period. - (ii) Fixed-volume enclosures may be operated with inlet and outlet flow streams either closed or open; if inlet and outlet flow streams are open, the air flowing into and out of the enclosure must be monitored in accordance with §86.107–96(a)(1)(ii)(B). Ambient temperatures shall be maintained at 96±3 °F throughout the 4-hour period. - (iii) For running loss enclosures ambient temperatures shall be maintained at 95±3 °F throughout the 4-hour period. For running loss enclosures designed with a vent for makeup air, the enclosure shall be operated with the vent closed. - (2) The enclosure may be sealed and the mixing fan operated for a period of up to 12 hours before the 4-hour background sampling period begins. - (3) Zero and span (calibrate if required) the hydrocarbon analyzer. - (4) Prior to the background determination, purge the enclosure until a stable background hydrocarbon reading is obtained. - (5) Turn on the mixing blower (if not already on). - (6) Seal enclosure and measure background hydrocarbon concentration, background methanol, temperature, and barometric pressure. These are the initial readings C_{HCi} , C_{CH_3OHi} , and P_{Bi} , T_i for the enclosure background determination.